An army of novel implantable, ingestible wireless medical devices is mobilizing to march medicine into the future. These technologies show potential to improve patient care, reduce medical errors and lower costs.
One example: Researchers at Brigham and Women's Hospital, Boston, are providing a better endoscopy camera capsule. This one is steerable, a big improvement on current capsule endoscopy technologies, which merely tumble uncontrollably through the digestive tract. The BWH design allows radiologists to guide the device during MRI scans and aim the onboard camera to obtain real-time images of specific areas of interest. Ultimately, that may mean less invasive and less costly examinations of digestive tract disorders, particularly in the hard-to-reach small intestine.
The BWH device has a unique propulsion system. "We use both static and radio frequency magnetic fields available in MRIs to generate capsule propulsion," says Nobuhiko Hata, an associate professor in the BWH radiology department.
Another example: A new device wirelessly transmits data from sites of recent orthopedic surgeries. This one, from Rensselaer Polytechnic Institute, Troy, N.Y., promises cost-effective and less invasive post-surgery monitoring.
http://www.hhnmag.com/hhnmag_app/jsp/articledisplay.jsp?dcrpath=HHNMAG/Article/data/06JUN2012/0612HHN_FEA_Wireless&domain=HHNMAG
One example: Researchers at Brigham and Women's Hospital, Boston, are providing a better endoscopy camera capsule. This one is steerable, a big improvement on current capsule endoscopy technologies, which merely tumble uncontrollably through the digestive tract. The BWH design allows radiologists to guide the device during MRI scans and aim the onboard camera to obtain real-time images of specific areas of interest. Ultimately, that may mean less invasive and less costly examinations of digestive tract disorders, particularly in the hard-to-reach small intestine.
The BWH device has a unique propulsion system. "We use both static and radio frequency magnetic fields available in MRIs to generate capsule propulsion," says Nobuhiko Hata, an associate professor in the BWH radiology department.
Another example: A new device wirelessly transmits data from sites of recent orthopedic surgeries. This one, from Rensselaer Polytechnic Institute, Troy, N.Y., promises cost-effective and less invasive post-surgery monitoring.
http://www.hhnmag.com/hhnmag_app/jsp/articledisplay.jsp?dcrpath=HHNMAG/Article/data/06JUN2012/0612HHN_FEA_Wireless&domain=HHNMAG
No comments:
Post a Comment